SoOrthoSlice Class |
Ortho slice shape node.
Namespace: OIV.VolumeViz.Nodes
The SoOrthoSlice type exposes the following members.
Name | Description | |
---|---|---|
SoOrthoSlice | Constructor. |
Name | Description | |
---|---|---|
AffectsState | Overrides default method on OIV.Inventor.Nodes.SoShape. | |
BeginShape(SoAction, SoShapeTriangleShapes) | Calls BeginShape(action, shapeType, (OIV.Inventor.Details.SoFaceDetail ^)nullptr). (Inherited from SoShape.) | |
BeginShape(SoAction, SoShapeTriangleShapes, SoFaceDetail) | These methods can be used by subclasses to generate triangles more easily when those triangles are part of a larger structure, such as a triangle strip, triangle fan, or triangulated polygon, according to the TriangleShape enumerated type. | |
Callback | (Overrides SoShapeCallback(SoCallbackAction).) | |
ComputeBBox(SoAction, SbXfBox3d, SbVec3d) | Compute object oriented bounding box (OOB) for subclass using information in the given action (which may not necessarily be an OIV.Inventor.Actions.SoGetBoundingBoxAction). | |
ComputeBBox(SoAction, SbBox3f, SbVec3f) | Compute the bounding box. | |
Copy | Calls Copy(false). (Inherited from SoNode.) | |
Copy(Boolean) | Creates and returns an exact copy of the node. | |
CopyFieldValues(SoFieldContainer) | Calls CopyFieldValues(fc, false). (Inherited from SoFieldContainer.) | |
CopyFieldValues(SoFieldContainer, Boolean) | Copies the contents of fc's fields into this object's fields. | |
Dispose |
Releases all resources used by SoDisposable.
(Inherited from SoDisposable.) | |
Distribute | (Inherited from SoNode.) | |
DoAction | (Overrides SoNodeDoAction(SoAction).) | |
EnableNotify | Notification at this Field Container is enabled (if flag == true) or disabled (if flag == false). | |
EndShape | end shape previously started with OIV.Inventor.Nodes.SoShape.BeginShape(OIV.Inventor.Actions.SoAction, OIV.Inventor.Nodes.SoShape.TriangleShapes, OIV.Inventor.Details.SoFaceDetail). | |
Equals | (Inherited from Object.) | |
FieldsAreEqual | Returns true if this object's fields are exactly equal to fc's fields. | |
Get | Returns the values of the fields of this object in the Open Inventor ASCII file format in the given string. | |
GetAllFields | Returns a list of fields, including the eventIn's and eventOut's. | |
GetAlternateRep | Returns an alternate represention for this node. | |
GetBoundingBox | (Overrides SoVolumeShapeGetBoundingBox(SoGetBoundingBoxAction).) | |
GetEventIn | Returns a the eventIn with the given name. | |
GetEventOut | Returns the eventOut with the given name. | |
GetField | Returns a the field of this object whose name is fieldName. | |
GetFieldName | Returns the name of the given field in the fieldName argument. | |
GetFields | Appends references to all of this object's fields to resultList, and returns the number of fields appended. | |
GetHashCode |
Overrides GetHashCode().
(Inherited from SoNetBase.) | |
GetMatrix | (Inherited from SoNode.) | |
GetName | Returns the name of an instance. | |
GetPrimitiveCount | Counts number of primitives produced by this shape. | |
GetRenderEngineMode | Returns the supported Render engine mode. | |
GetRenderUnitID | (Inherited from SoVolumeShape.) | |
GetShapeType | Gets the current shape Full Scene Antialiasing type. | |
GetStringName | (Inherited from SoBase.) | |
GetType | Gets the Type of the current instance. (Inherited from Object.) | |
GLRender | (Overrides SoSliceGLRender(SoGLRenderAction).) | |
GLRenderBelowPath | (Inherited from SoNode.) | |
GLRenderInPath | (Inherited from SoNode.) | |
GLRenderOffPath | (Inherited from SoNode.) | |
GrabEventsCleanup | (Inherited from SoNode.) | |
GrabEventsSetup | (Inherited from SoNode.) | |
HandleEvent | (Inherited from SoNode.) | |
HasDefaultValues | Returns true if all of the object's fields have their default values. | |
IsBoundingBoxIgnoring | Used by BoundingBoxAction to know if bounding box computation should be ignored or not. | |
IsNotifyEnabled | Notification is the process of telling interested objects that this object has changed. | |
IsOverride | Returns the state of the override flag. | |
IsSynchronizable | Gets the ScaleViz synchronizable state of this object. | |
Pick | (Inherited from SoNode.) | |
RayPick | (Overrides SoShapeRayPick(SoRayPickAction).) | |
Search | (Inherited from SoNode.) | |
Set | Sets one or more fields in this object to the values specified in the given string, which should be a string in the Open Inventor file format. | |
SetName | (Inherited from SoBase.) | |
SetOverride | Turns the override flag on or off. | |
SetShapeType | set the antialiasing type for this shape. | |
SetSynchronizable | Sets this to be a ScaleViz synchronizable object. | |
SetToDefaults | Sets all fields in this object to their default values. | |
ShapeVertex | add a primitive vertex to the shape prevously started with OIV.Inventor.Nodes.SoShape.BeginShape(OIV.Inventor.Actions.SoAction, OIV.Inventor.Nodes.SoShape.TriangleShapes, OIV.Inventor.Details.SoFaceDetail). | |
ToString |
Converts this SoBase structure to a human readable string.
(Inherited from SoBase.) | |
Touch | Marks an instance as modified, simulating a change to it. | |
Write | Implements OIV.Inventor.Actions.SoWriteAction for this node. |
Name | Description | |
---|---|---|
alphaUse | Specifies how to use the alpha component of each voxel's RGBA value. | |
alternateRep | This field optionally holds a subgraph containing only core Open Inventor nodes that can be used for rendering when VolumeViz is not available. | |
axis | Slice axis (X, Y, or Z). | |
boundingBoxIgnoring | Whether to ignore this node during bounding box traversal. | |
bumpScale | Specifies the intensity of the bump mapping effect. | |
clipping | Activate/deactivate a clipping plane on a per-slice basis. | |
clippingSide | Specify the clipping side. | |
composition | Obsolete. Specifies color composition mode. | |
enableBumpMapping | Specifies if a bump mapping effect will be applied to the slice. | |
interpolation | Interpolation mode. | |
IsDisposable | ISafeDisposable interface implementation.
(Inherited from SoDisposable.) | |
largeSliceSupport | Activate/deactivate direct loading of full resolution slice data. | |
sliceNumber | Slice number. | |
UserData |
Gets or sets the user data to be contained by the field container.
(Inherited from SoFieldContainer.) | |
useRGBA | Specifies whether to create RGBA textures. |
This node defines an ortho (axis aligned) slice along the X, Y, or Z axis of the volume data defined by an OIV.VolumeViz.Nodes.SoVolumeData node. The slice orientation and position are defined by the OIV.VolumeViz.Nodes.SoOrthoSlice.m_axis and OIV.VolumeViz.Nodes.SoOrthoSlice.m_sliceNumber fields.
For a non-RGBA (scalar valued) volume, each voxel's RGBA value is determined by the current OIV.LDM.Nodes.SoDataRange and OIV.LDM.Nodes.SoTransferFunction. The current diffuse color and transparency (set, for example, with an OIV.Inventor.Nodes.SoMaterial node) modifies the appearance of the slice. This means that, for example, the current transparency can be used as a global alpha value to modulate the overall opacity of the slice. For an RGBA volume each voxel's RGBA value comes directly from the volume data.
The OIV.VolumeViz.Nodes.SoVolumeShape.m_interpolation field controls how the texture is interpolated.
The OIV.VolumeViz.Nodes.SoSlice.m_alphaUse field (OIV.VolumeViz.Nodes.SoSlice) controls how the voxel's alpha component is used when drawing the slice.
Optionally a bump mapping effect may be applied. Normal vectors are automatically computed from the data value gradient. The OIV.VolumeViz.Nodes.SoSlice.m_enableBumpMapping and OIV.VolumeViz.Nodes.SoSlice.m_bumpScale fields (OIV.VolumeViz.Nodes.SoSlice) control whether bump mapping is active and the intensity of the effect.
Notes:
Drawing position: The OIV.VolumeViz.Nodes.SoOrthoSlice geometry passes through the center of the voxels in the specified slice. So, for example, an ortho slice with sliceNumber = 0 will be drawn one-half voxel size (on the slice axis) in from the bounding box of the volume. This is slightly different than OIV.VolumeViz.Nodes.SoVolumeSkin. A volume skin is approximately the same as six ortho slices, but each face of the skin is drawn at the outer edge of the voxel.
Transformation matrices: The volume size and orientation (like geometry) can be modified by transformation nodes in the scene graph and this in turn modifies the appearance of volume visualization nodes. However the same transformation must be applied to the volume data node and all volume visualization nodes associated with that volume. So effectively any transformation nodes that affect the volume must be placed before the volume data node.
Picking: The entire slice is pickable, even where it is transparent as a result of the current transfer function. The OIV.VolumeViz.Details.SoOrthoSliceDetail class allows you to get the voxel position and value after picking.
Dragging: It is possible to interactively translate and rotate slices using an Open Inventor dragger, e.g. OIV.Inventor.Draggers.SoTranslate1Dragger. However the dragger's position in XYZ space must be converted to a slice number. For a dragger that is specific to ortho slices, see the class OIV.VolumeViz.Draggers.SoOrthoSliceDragger.
Interpolation: Interpolation is specified using the OIV.VolumeViz.Nodes.SoVolumeShape.m_interpolation field. The default (LINEAR) does bi-linear interpolation between voxel values. The NEAREST value can be used to display individual voxels. For best image quality we recommend using the MULTISAMPLE_12 value.
Data range: By default VolumeViz maps the entire range of the voxel's data type (e.g. 0..65535 for unsigned short) into the colormap. This is often correct for byte (8 bit) voxels, but seldom correct for 16 bit voxels and never correct for floating point voxels. Use an OIV.LDM.Nodes.SoDataRange node to specify the actual (or desired) range of data values to be mapped. Also use an OIV.LDM.Nodes.SoDataRange node to implement brightness/contrast control like the Window/Level setting commonly used with medical images.
Clipping: Volume primitives can be clipped using a region of interest (OIV.LDM.Nodes.SoROI), geometry (OIV.VolumeViz.Nodes.SoVolumeClippingGroup) and/or height fields (OIV.VolumeViz.Nodes.SoUniformGridClipping). They are also clipped by OpenGL clipping planes (OIV.Inventor.Nodes.SoClipPlane), but we recommend using the VolumeViz clipping nodes instead. Optionally, this node also defines a clipping plane. Similar to OIV.Inventor.Nodes.SoClipPlane, this clipping plane affects all subsequent geometry, including OIV.VolumeViz.Nodes.SoVolumeRender, but does not of course affect the ortho slice itself. The OIV.VolumeViz.Nodes.SoOrthoSlice.m_clipping and OIV.VolumeViz.Nodes.SoOrthoSlice.m_clippingSide fields control whether clipping is active and which half-space is clipped. Clipping side FRONT means that the clip plane (removes) clips away geometry in the positive direction on the slice axis.
Material: The color of each voxel is modulated by the current diffuse color in the traversal state. The default diffuse color is 0.8,0.8,0.8. This results in full intensity values in the color map being displayed as 80% intensity. Therefore we recommend adding an OIV.Inventor.Nodes.SoMaterial node before the slice and setting its diffuseColor field to full white (1,1,1).
Transparency:
Typically the color map (OIV.LDM.Nodes.SoTransferFunction) used for volume rendering (OIV.VolumeViz.Nodes.SoVolumeRender) assigns transparency (alpha < 1) to some voxel values. If you want to use the same color map for slice rendering, but render the slice completely opaque, set the OIV.VolumeViz.Nodes.SoSlice.m_alphaUse field to ALPHA_OPAQUE. This overrides the alpha values in the color map (or an RGBA volume). However it does not affect transparency assigned using an OIV.Inventor.Nodes.SoMaterial node.
If you want to adjust the overall transparency of the slice, add an OIV.Inventor.Nodes.SoMaterial node and set its transparency field (keeping alphaUse set to ALPHA_AS_IS). Effectively a scale factor 1-transparency is applied to each voxel's alpha value.
Intersecting transparent slices cannot be rendered correctly by the basic blending transparency algorithms. To render this case correctly, set the transparency algorithm to SORTED_PIXEL using the viewer class or OIV.Inventor.Actions.SoGLRenderAction.
Voxel edges: The edges of the voxels can also be rendered. See options in the OIV.VolumeViz.Nodes.SoVolumeRenderingQuality node.
Custom shaders: The current OIV.VolumeViz.Nodes.SoVolumeShader node, if any, allows custom shaders to be defined for special computation or rendering effects, including blending multiple volumes.
Large Slice mode: When the "large slice" mode is enabled (see OIV.VolumeViz.Nodes.SoSlice.m_largeSliceSupport), if all the required full resolution tiles have already been loaded, then the slice data is taken from LDM system memory cache as usual. But if some required tiles are not currently in memory, the required slice data will be loaded directly from the volume reader without loading the complete tiles. This reduces disk I/O and reduces the amount of system memory required to display the slice at full resolution, so larger (or more) slices can be displayed. The required tiles are then scheduled to be loaded asynchronously in case adjacent slices are displayed later. For example, loading a 1024x1024 OIV.VolumeViz.Nodes.SoOrthoSlice from an 8-bit dataset with 128x128x128 tiles would normally require loading 1024x1024x128 bytes of data (as complete tiles). With largeSliceSupport enabled, only 1024x1024 bytes (maximum) of data need to be loaded (in the worst case where no high resolution data is currently in memory).
Performance:
Tile size: For backward compatibility, the default tile size is still only 64. This is quite small for modern CPU/GPU hardware. The smaller the tile size, the larger the total number of tiles that must be managed by VolumeViz. This overhead can be significant, especially for operations that require reloading the data textures on the GPU, for example, changing the data range (OIV.LDM.Nodes.SoDataRange). For smaller volumes, like 512^3, it can be efficient to set the tile size large enough to contain the entire volume. For very large volumes, larger tile sizes are efficient for OIV.VolumeViz.Nodes.SoVolumeRender but somewhat inefficient for slice rendering because complete tiles must be loaded even though the slice only uses part of the data. Applications should experiment. For volumes stored in LDM file format, the tile size must be specified when the volume is converted to LDM (see OIV.LDM.Converters.SoConverter and the "-t" option). For other data data formats the tile size can be specified using the OIV.VolumeViz.Nodes.SoVolumeData node's ldmResourceParameters field, but only after setting the filename field or calling the SetReader()method.
LDM_USE_IN_MEM_COMPRESSION VolumeViz always manages data as "tiles", regardless of the data format. In many cases VolumeViz must create (or uncompress) the tiles at run time. These cases include in-memory volumes, any volume reader that does not implement the readTile() method (this includes all built-in formats except LDM, e.g. DICOM, SEGY, ...) and compressed LDM format files. If this variable is true (the default), VolumeViz only keeps a small cache of created/uncompressed tiles in CPU memory. If a tile's data is needed and that tile is not in the cache, the tile must be recreated. This overhead can be significant, especially for operations that require recreating all the data textures on the GPU, for example changing the data range (OIV.LDM.Nodes.SoDataRange). We recommend setting this variable to false (see OIV.Inventor.SoPreferences) unless saving CPU memory is critical.
Compressed textures For performance reasons, OIV.VolumeViz.Nodes.SoOrthoSlice accumulates small textures into a bigger one. When using compressed RGBA textures (via OIV.LDM.Nodes.SoDataSet's field useCompressedTexture), this optimization cannot be done. If you want to favor performance rather than memory usage, you should disable compression (enabled by default if supported by the graphic card)
Medical data axes: The three standard axes (or viewing planes) are Axial, Coronal and Sagittal. How these axes correspond to the IJK axes in voxel space and the XYZ axes in 3D space depends on the data set. However DICOM volumes typically have LPS (Left, Posterior, Superior) orientation and in this case:
Axial is the Z axis i.e., toward the head (Superior) is the K / +Z / Axial axis.
Coronal is the Y axis i.e., toward the back of the body (Posterior) is the J / +Y / Coronal axis.
Sagittal is the X axis i.e., toward the left side of the body (Left) is the I / +X / Sagittal axis.
For simple data sets, a basic VolumeViz rendering could be achieved with only a few nodes: minimally an OIV.VolumeViz.Nodes.SoVolumeData node to identify the data set and one rendering node. However most data sets need at least some of the additional nodes shown here in order to get a correct and useful rendering. Most applications will need additional nodes to take advantage of region of interest, interaction, clipping and other VolumeViz features. Please consider the code shown here as simply a guideline and a starting point for exploring the many powerful features available in Open Inventor.
Note that some of the property nodes (data, material, color map, etc) will typically be shared by multiple rendering nodes. In other words the volume usually only needs to be loaded once, using a single OIV.VolumeViz.Nodes.SoVolumeData node, then multiple slices and/or regions can be rendered using that data node.
Also note that this example is for a data volume, where each voxel can be considered a discrete sample from a continuous data field and interpolation should be used to compute values between voxel centers. If you are rendering a label volume, then each voxel is an "id" assigning that voxel to a specific material, object, etc. In this case, set the interpolation field to NEAREST to disable interpolation.
SoPreferences.SetValue( "LDM_USE_IN_MEM_COMPRESSION", "0" ); SoSeparator volSep = new SoSeparator(); root.AddChild( volSep ); SoVolumeData volData = new SoVolumeData(); volData.fileName.Value = "$OIVNETHOME/src/demos/data/VolumeViz/3DHead.vol"; volSep.AddChild( volData ); SoDataRange volRange = new SoDataRange(); if (volData.GetDatumSize() > 1) { double minVal, maxVal; volData.GetMinMax( out minVal, out maxVal); volRange.min.Value = minVal; volRange.max.Value = maxVal; } volSep.AddChild( volRange ); SoTransferFunction volTF = new SoTransferFunction(); volTF.predefColorMap.Value = SoTransferFunction.PredefColorMaps.INTENSITY; volSep.AddChild( volTF ); SoMaterial volMat = new SoMaterial(); volMat.diffuseColor.SetValue(1, 1, 1); volSep.AddChild( volMat ); SoVolumeShader volShader = new SoVolumeShader(); volShader.interpolateOnMove.Value = true; volSep.AddChild( volShader ); SoOrthoSlice slice = new SoOrthoSlice(); SbVec3i32 voldim = volData.data.GetSize(); slice.axis.Value = SoOrthoSlice.AxisType.Z; slice.sliceNumber.Value = (uint)(voldim[2] / 2); slice.interpolation.Value = SoVolumeShape.Interpolations.MULTISAMPLE_12; volSep.AddChild( slice );
OrthoSlice {
sliceNumber | 0 |
axis | Z |
interpolation | LINEAR |
alphaUse | ALPHA_BINARY |
useRGBA | false |
clipping | false |
clippingSide | BACK |
alternateRep | NULL |
enableBumpMapping | false |
bumpScale | 1.0 |
OIV.Inventor.Actions.SoGLRenderAction Draws a textured rectangle based on current OIV.VolumeViz.Nodes.SoVolumeData, OIV.LDM.Nodes.SoTransferFunction, and OIV.LDM.Nodes.SoROI nodes. Sets: OIV.Inventor.Elements.SoClipPlaneElement
OIV.Inventor.Actions.SoGetBoundingBoxAction Computes the bounding box that encloses the slice.