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Abstract— In this paper, we are proposing a 3D segmentation
and interactive visualization workflow. The segmentation im-
plementation uses a globally convex multiphase active contours
without edges. This algorithm has been proven to be initializa-
tion independent due to their globally convex formulation and
better than other approaches due to robustness to image vari-
ations and adaptive energy functionals. The workflow includes
a flexible 3D visualization application that can handle very
large volumes using multi-resolution hierarchical data formats
following the segmentation. We also designed a custom fragment
shader that is capable of meaningfully fusing the data from
three different volumes: a segmented label volume, a mean
value per voxel volume and a skull striped volume for effective
visualization without modifying the segmented results. Giving
researchers the access to a whole end to end pipeline, from 3D
segmentation to custom real time interactive 3D visualization
is, in our opinion, a powerful tool focused on an analyst/expert
centric workflow.

I. INTRODUCTION

Segmentation as an ill-posed problem has existed through
the history of computer vision and image processing [1],
[2], [3], [4]. Automatic/semi-automated analysis has always
been of interest to researchers as a means of speeding up
the accuracy and analyzing an ever growing volume of data.
Breakthroughs in imaging methodologies, such as using safer
dyes, increasing resolutions of scanners and inexpensive
storage has resulted in a plethora of data that requires
analysis and a way to efficiently visualize the data [5]. 3D
segmentation and visualization of medium to large volumes
included painstaking processes of marking regions of interest
for every slice and interpolating the labels through the entire
volume [6]. In addition to this, there are no known universal
fully automatic segmentation algorithms that are capable of
handling tumors or lesions of different shapes and types
at the level of accuracy that is required for a successful
treatment plan. While deep convolutional neural networks
have shown promise in large scale accurate analysis, there
is still quite a lot of interdisciplinary work that is required
in order for these networks to mature and be approved for
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use in diagnostics. Throughout this work, we assume that the
diagnosticians will still follow the same workflow of having
to look through a vast amount of data and tools that help in
this regard will be of great interest.

One of the landmark approachs in automatic segmentation
is that of Chan and Vese [7] who extended the seminal
work of Mumford and Shah [8] based on variational energy
minimization formulation. Vese and Chan [9] later extended
their active contour without edges model to perform mul-
tiphase segmentation. This multiphase approach provides a
numerically stable model that is independent of initialization
and does not get stuck on local minima, making it an easy
to use and powerful algorithm. While applications such as
3D Slicer [10] have provided interactive tools along with a
set of basic algorithms to help with 3D segmentation in MR
and CT images, we believe that there are specific problems
that require advanced algorithms, especially with large data
and the need to interactively visualize and customize the
visualization. While computer vision and image processing
techniques have taken a backseat due to the immense pop-
ularity of convolutional neural networks, the need to train
extensive networks, while superior in accuracy under certain
circumstances, is not practical in an interactive workflow.
GeoS [11] was presented as a geodesic algorithm that would
help with interactive 3D segmentation in medical imagery.
Our work distinguishes itself in three key ways : (1) A
globally convex multiphase algorithm that is far superior to
edge based techniques, (2) Interactive volume visualization
tools using a powerful framework, (3) Customization friendly
approach that would help researchers generate high quality
visual outputs for further determining diagnostic relevance.
We used the MR simulated images from BrainWeb [12] and
generated results by processing each individual slice and
visualizing the end result as a full 3D volume.

We organized the rest of the paper as follows. Section II
briefly introduces the active contour segmentation model and
Section III details how the segmentation module and the
visualization techniques are integrated for fast interactive
workflow. Finally, Section IV concludes the paper.

II. GLOBALLY CONVEX MULTIPHASE ACTIVE CONTOURS
FOR BRAIN MRI SEGMENTATION

We recall the multiphase formulation of Vese and Chan [9]
and restrict ourselves to the piecewise constant four phase
case here, the general case will be reported elsewhere. Let
φ1, φ2 : Ω ⊂ R2 → R be the two level sets. H1 = H(φ1),
H2 = H(φ2) and H̃1 = 1 − H(φ1), H̃2 = 1 − H(φ2)
where H is the Heaviside function. Our goal is to solve the



(a) n = 3, RF = 20

(b) n = 5, RF = 20

(c) n = 5, RF = 40

Fig. 1. Examples of robust four phase active contour segmentation with
energy minimization (3) of transaxial slices from the BrainWeb database.
We show the input (left) and the segmentation for different noise (n) and
non-uniformity (RF ) levels. (a) n = 3, RF = 20, (b) n = 5, RF = 20,
(c) n = 5, RF = 20.

following variational energy minimization,

min
(Φ,c)

{
F1(Φ, c) =

2∑
k=1

∫
Ω

δ(φ1)|∇φk| dx

+
3∑
i=0

∫
Ω

λb(i)(I − cb(i))
2

2∏
k=1

ωbk(i)(H(φk)) dx,

} (1)

where b(i) = (b1, b2) are a binary representation of i ∈
{0, 1, 2, 3}, ω0(z) = z and ω1(z) = 1 − z. The parameters
λb(i) are weighting fitting terms. The variational problem (1)
is solved using a two-step algorithm where at the first step the
constant mean values c = (c11, c10, c01, c00) are computed

by

cb(i) =

∫
Ω
I

2∏
k=1

ωbk(i)(H(φk)) dx

∫
Ω

2∏
k=1

ωbk(i)(H(φk)) dx

and at the second step we update the function Φ = (φ1, φ2).
In Vese and Chan [9], the corresponding gradient descent

equations are used to implement the active contours in a
level set based approach. In the numerical implementation
of the above PDEs a non-compactly supported, smooth
approximation of the Heaviside function Hε(x), such that
Hε(x) → H(x) as ε → 0 is utilized. Since the above
minimization (1) is non-convex the time discretized gradi-
ent descent PDEs requires large iterations to convergence.
Moreover, the final segmentation result may not correspond
to the global minimum of the energy function. Following,
Chan et al [13], we can derive a relaxed energy minimization
formulation by dropping the Dirac delta (δ(φ) in (1)) to
obtain,

min
(u,c)∈{0,1}2×R4

{
F2(u, c) =

2∑
k=1

∫
Ω

|∇uk| dx

+
3∑
i=0

∫
Ω

λb(i)(I − cb(i))
2

2∏
k=1

ωbk(i)(uk) dx

}
.

(2)

As proved in [14], the above energy minimization problem
can be relaxed by allowing the variable u to take values in
[0, 1]2 and then solve the minimization problem,

min
(u,c)∈[0,1]2×R4

F2(u, c), (3)

where for fixed c ∈ R4 there exist a function of bounded
variation u ∈ [0, 1]2 (u ∈ BV[0,1]2(Ω)) solving (2). This for-
mulation allows for a robust automatic segmentation that can
be applied to brain MR imagery both with inhomogeneities
as well as increasing noise levels. Figure 1 shows example
segmentations obtained with the robust energy minimization
model on normal brain MRIs from the BrainWeb database
at different inhomogeneity and noise levels.

III. HIGH PERFORMANCE 3D SEGMENTATION AND
VISUALIZATION

We have implemented the entire workflow, comprised of
the multiphase segmentation algorithm for solving the energy
minimization (3) and visualization, using a modern version
of the Open Inventor [15], [16] toolkit. Open Inventor, at
its backend, makes OpenGL calls to perform the rendering
while exposing a higher level, object-oriented, application
programming interface to the programmer. The arithmetic
computation uses the toolkit’s concept of engines. Open
Inventor engines traditionally were used to manipulate the
3D data or geometry elements by linking to transformation
nodes such as to translate or rotate these elements [17]. A
modern evolution of these engines is more generalized to



Fig. 2. End to end 3D segmentation and interactive visualization workflow showing the flow of data from acquisition to final visualization analysis. Steps
include filtering, pre-processing, several image processing engine based computations, and a custom shader framework to combine resulting volumes.

(a) Volume rendering with all all pixels per slice visualized (b) Volume rendering after region growing removing the pixels outside of the
brain region

Fig. 3. Region growing is used to remove the un-needed pixels for every slice so that the user can visualize just the brain regions in 3D

include computation and those specific to image processing
are now part of an extension to the toolkit [18]. The object
oriented approach to 3D rendering trickles down to arranging
basic elements such as geometry (e.g. cones, spheres, cubes),
volume data (e.g. large data tiles out of core or arrays), lights,
cameras, rendering techniques (e.g. volume rendering, slices)
and more as part of a graph structure. These elements are
called nodes and for more information see [15]. Figure 2
shows the complete workflow from reading in a stack of
images or 3D volume, pre-processing the result and a few
visualization steps with custom shaders or chosen colormaps
applied consistently across the 2D slice visualization as well
as in 3D. It is important to note that the same data nodes
are shared across different rendering methods because of the
scenegraph architecture of Open Inventor and thus there is
no replication of data in memory.

A. Multiphase Active Contours for Segmentation

In the examples shown, our workflow starts with reading in
the MR data as a stack of images. The multiphase active con-
tour algorithm (3) is then run on each individual slice. The
result is one 2D map per slice where every pixel corresponds
to one of the 4 mean values determined by the segmentation
which we will refer to as the mean volume when all the
slices are put together in 3D. Similarly, a label volume is
when each pixel in the result map is assigned an integer
value. The implementation solves the equations mentioned
in Section II. Updating the mean values is not performed in
every iteration to save computation, rather, is controlled by
a parameter. Meaningful defaults are recommended and can
be tweaked if necessary by the user.

B. Region Growing for Skull Stripping

Once we have the segmented volume, we would also need
to remove the unwanted outside regions to look at the brain.



(a) Histogram of labeled volume. X-Axis scales from 0-300 showing discreet
values

(b) Histogram of mean segmented volume

Fig. 4. The mean value to label association is done by looking at the same voxel in both the volumes. While the mean values per label has a variance,
the statistics after association can be helpful to visualize.

Fig. 5. Open Inventor scenegraph designed specifically with a shading
script (’FragmentShader node’) that combines the volume in a meaningful
way. The voxels outside the binary skull stripped volume are made fully
transparent. Note that there are 3 volume data nodes : 1) Mean valued 2)
Labeled and 3) Binary skull stripped volume.

The procedure followed for this is where the region growing
algorithm is applied through every slice for the labels that
are not close to the image dimensions. The result for this is
predictable due to the input being the segmented data where
every region has a piece-wise constant value. Assembling the
slices together we can then eliminate the unneeded parts and
the resulting output looks as in Figure 3.

C. Visualization and Shader Framework

Following the processes of reading in the imagery, pre-
processing and segmentation we would have two volumes:
1) Mean value per pixel in every slice through the volume
and 2) Integer label per pixel in every slice through the
volume. Since the multiphase active contour implementation
works on a 2D slice, in order to interpolate and determine

a 3D structure we assign an integer label in sorted order of
mean values per slice. The histograms for both the volumes
are shown in Figure 4. Instead of ad-hoc thresholding the
volumes for ease of visualization, we are using a shader
framework to combine the three volumes : the two mentioned
above and the region growing binary volume after removing
the extra regions around the brain region. The scenegraph
describing the multiple volumes is as shown in Figure 5.
The shader code is shown in Code 1.

Code 1. GLSL (GLslang) or OpenGL Shading Language script to blend
the 3 volumes

//use Open Inventor useful headers to get
data value

//and colors assigned to the data using the
transfer functions

//!oiv_include <VolumeViz/vvizGetData_frag.h>
//!oiv_include

<VolumeViz/vvizTransferFunction_frag.h>

uniform VVizDataSetId Volume1;
uniform VVizDataSetId Volume2;
uniform VVizDataSetId Volume3;

//blending function
vec4 blend(in vec3 texCoord)
{ //get voxel values
VVIZ_DATATYPE data1 = VVizGetData(Volume1,

texCoord);
VVIZ_DATATYPE data2 = VVizGetData(Volume2,

texCoord);
VVIZ_DATATYPE data3 = VVizGetData(Volume3,

texCoord);
//get assigned color values for each volume
vec4 color1 = VVizTransferFunction(data1,

0);
vec4 color2 = VVizTransferFunction(data2,

1);
vec4 color3 = VVizTransferFunction(data3,

2);
//return custom color
//data3 is the voxel value from the skull

stripped binary volume
vec4 result_color;



(a) Volume Rendering (b) Voxelized Rendering

Fig. 6. Volume rendering and 2D slice rendering at each axis : Saggital, Coronal and Axial using (top row) the ’Physics’, (middle row) the ’Glow’ and
(bottom row) the ’Standard’ colormaps in (a), Voxelized rendering in (b). Note that the mouse click and drag in the 2D slice panels results in scrolling
through the slices and in the 3D panel results in full manipulation of 3D data including rotation and translation of the camera.

if (data3 > 0.0f){
result_color.r = color2.r * data1;
result_color.g = color2.g * data1;
result_color.b = color2.b * data1;
result_color.a = color1.a;
}
else{
//result_color = Color123;
result_color.r = 0.0f;
result_color.g = 0.0f;
result_color.b = 0.0f;
result_color.a = 0.0f;
}
return result_color;
}
// Implement VVizComputeFragmentColor for

slice nodes

vec4 VVizComputeFragmentColor(VVIZ_DATATYPE
vox, vec3 texCoord)

{
return blend(texCoord);
}
// Implement VVizComputeFragmentColor for

SoVolumeRender
vec4 VVizComputeFragmentColor(VVizDataSetId

data, vec3 rayDir, inout VVizVoxelInfo
voxelInfoFront, in VVizVoxelInfo
voxelInfoBack, int maskId)

{
return blend(voxelInfoFront.texCoord);
}



D. Dataset and Results

We used synthetically generated MR images from the
BrainWeb project [12]. Images showing multiple sclerosis
(MS) lesions and a normal brain were used to segment and
visualize. For a benchmark of the multiphase active contour
model used in this work, we refer the readers to detailed anal-
ysis against ground-truth with standard metrics [14]. Figure 6
shows the final visualizations with different colormaps that
can be used for analysis, for example, the ’Physics’, ’Glow’
and ’Standard’. We determine the voxel value to be displayed
in realtime and map it to a colormap which is a user defined
preference. This enables the user to visualize the fidelity of
the obtained segmentations and further analyze the volumes
in full 3D. The corresponding voxelized renderings are also
shown. These can be useful for the user to perform voxel-
exact selection on the volume for analysis and interpretation.

IV. CONCLUSION

Brain MR image analysis and visualization is an important
component many neurological studies. In this work, we
presented our 3D segmentation and interactive visualization
with the state of the art segmentation module based on
active contours and real-time shader based rendering. Our
proposed workflow is flexible such that various pre-filtering
and image processing algorithms can be utilized as plug-n-
play modules along with visualizations that are extensible
by fusing different 3D volumes. We provide a proof of
concept experiment with BrainWeb MR images that shows
the workings of the proposed workflow for fast segmentation
and real-time interactive visualization on 3D volumes. We
believe this combination of advanced computational image
processing techniques along with volume rendering offers a
promising tool in biomedical image informatics.
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